Search results for "Solid oxide fuel cells"

showing 4 items of 4 documents

Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temper…

2013

Ba0.5Sr0.5Co0.8Fe0.2O3-? (BSCF) powders were prepared by solution combustion synthesis using single and double fuels. The effect of the fuel mixture on the main properties of this well-known solid oxide fuel cell cathode material with high oxygen ion and electronic conduction was investigated in detail. Results showed that the fuel mixture significantly affected the area-specific resistance of the BSCF cathode materials, by controlling the oxygen deficiency and stabilizing the Co2+ oxidation state. It was demonstrated that high fuel-to-metal cations molar ratios and high reducing power of the combustion fuel mixture are mainly responsible for the decreasing of the area-specific resistance o…

Materials scienceCathode materialsInorganic chemistrychemistry.chemical_elementBSCFCombustionlaw.inventionchemistry.chemical_compoundOxidation statelawPhase (matter)Materials ChemistryChatode materialIntermediate temperature solid oxide fuel cellsStrontiumRenewable Energy Sustainability and the EnvironmentPerovskite-type materialsBariumPerovskite-type compoundsCombustion fuel mixtureCathodeElectronic Optical and Magnetic MaterialsCobaltiteFuel TechnologychemistrySolution combustion synthesisSolid oxide fuel cellSettore CHIM/07 - Fondamenti Chimici Delle TecnologieMaterials for Renewable and Sustainable Energy
researchProduct

DFT modelling of oxygen adsorption on the Ag-doped LaMnO3 (001) surface

2019

This study was partly financed by the State Education Development Agency of the Republic of Latvia via the Latvian State Scholarship (A.A.) and Latvia-Ukraine Project (Grant LV-UA/2018/2 to E.K.). The work of T.I. is performed under the state assignment of IGM SB RAS. Also, this research was partly supported by the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the scientific and technology Program BR05236795 ‘‘Development of Hydrogen Energy Technologies in the Republic of Kazakhstan’’. The authors thank M. Sokolov for technical assistance and valuable suggestions.

inorganic chemicalsMaterials scienceAg catalystchemistry.chemical_element02 engineering and technologySolid oxide fuel cells01 natural sciences7. Clean energyElectric chargeOxygenlaw.inventionoxygen adsorptionAdsorptionAb initio quantum chemistry methodslaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryRedistribution (chemistry)Electrical and Electronic EngineeringLaMnO3010302 applied physicsab initio calculationsDoping021001 nanoscience & nanotechnologyCondensed Matter PhysicsCathodeElectronic Optical and Magnetic MaterialschemistryPhysical chemistryDensity functional theory0210 nano-technologyJournal of Electronic Materials
researchProduct

Development of anode supported Single Chamber Solid Oxide Fuel Cells running in air/methane mixture

2013

International audience; Single Chamber Solid Oxide Fuel Cells (SCFC) show a growing interest and are the concern of more and more papers. In such device, anode and cathode are ex-posed to a gas mixture of fuel (hydrocarbon) and oxidant (air) so that no more sealing with electrolyte is necessary. Their operating principle is based on the different catalytic activities of anode and cathode: Ideally, the anode has to be active for the oxidation of fuel while the cathode should present only a strong electro-activity for oxygen reduction. In this paper, we present the development of an anode supported SCFC device running in air/methane mixture characterized by their volume ratio, Rmix = CH4/O2.

anode[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringNiO reductionair/methane mixture[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringSingle Chamber Solid Oxide Fuel CellsSCFC
researchProduct

Theoretical and experimental study of novel types of solid oxide fuel cell electrodes

2016

Master's thesis Renewable Energy ENE500 - University of Agder 2016 Solid oxide fuel cells (SOFCs) have the potential to become one of the efficient and costeffective system for direct conversion of a wide variety of fuels to electricity. The performance, stability and durability of SOFCs depend strongly on the materials used for the fabrication of electrodes as well as the fabrication process. For anode supported SOFCs, the tape casting method has been the de facto standard for constructing cell components. Furthermore, organic solvents such as ethanol, propanol, terpineol and poly-ethers are generally used in industrial tape casting as the solvent medium to make the chemical slurries out o…

modellingENE500VDP::Teknologi: 500::Miljøteknologi: 610fabricationSolid oxide fuel cellssimulation
researchProduct